SBSE4VM: Search Based Software Engineering
for Variability Management

Roberto E. Lopez-Herrejon
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
roberto.lopez@jku.at

Abstract—SBSE4VM is an ongoing Lise Meitner Fellowship
project sponsored by the Austrian Science Fund (FWF) that runs
for two years. The driving goal of the project is to explore the
application of Search Based Software Engineering techniques to
reverse engineer, evolve, and fix inconsistencies in systems with
variability.

Index Terms—Software Product Lines; Feature Orientation;
Product Line Evolution; Search Based Software Engineering;
Fixing Inconsistencies

I. INTRODUCTION

Because of economical, technological and marketing rea-
sons today’s software systems are more frequently being
built as Software Product Lines (SPLs) where each product
implements a different combination of features — increments
in program functionality [1]. The effective management and
realization of variability — the capacity of software artifacts
to vary [2] — is crucial to reap the benefits of SPL practices.
Among these benefits are: increased software reuse, faster and
easier product customization, and reduced time to market.

An important challenge in Software Product Line Engi-
neering (SPLE) is guaranteeing that all the desired software
products (i.e. distinct feature combinations) can in fact be
realized from the existing set of artifacts in a SPL. Verifying
this guarantee is a non-trivial task because of the typically
large number of software products and the inherent complexity
of the artifacts involved. This guarantee is even more important
when considering variability evolution, whether in effectively
managing changes to an existing SPL or in extracting vari-
ability out of existing system variants — that may or may not
have some common development history — to create a new
SPL. Consequently, when this guarantee does not hold, it is
vital to provide software designers with sets of fixes or other
variability modeling and implementation alternatives to deal
with this lack.

Search-Based Software Engineering (SBSE) is an emerging
discipline that focuses on the application of search-based opti-
mization techniques to problems in Software Engineering [3].
Among the techniques SBSE relies on are basic search algo-
rithms such as hill climbing or simulated annealing, and evolu-
tionary computation techniques such as genetic algorithms or
genetic programming. SBSE techniques permit the elicitation
of multiple software designs or module refactoring that can be
evaluated and assessed using different software quality metrics

Alexander Egyed
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
alexander.egyed @jku.at

Mobile

Fig. 1: Feature Model Example

as fitness metrics. Additionally, such techniques are generic,
robust and scalable making them suitable for addressing the
challenges of variability management. The driving goals of
the project is thus to perform a comprehensive review and
analysis of SBSE techniques for variability management and
to provide adequate tool support to empirically validate their
effectiveness and adequacy in various case studies.

II. VARIABILITY MODELING BASICS

Variability modeling specifies all meaningful and legal fea-
ture combinations in a SPL, and its de facto standard are
Feature Models (FM) [4]. Figure E] shows a feature model
example of a hypothetical product line of Video-On-Demand
systems. Features are depicted as labeled boxes and are
connected with lines to other features with which they relate,
collectively forming a tree-like structure. The root feature of
a SPL is always included in all programs, in this case the root
feature is VOD. A feature can be classified as: mandatory if it is
part of a program whenever its parent feature is also part (e.g.
Play), and optional if it may or may not be part of a program
whenever its parent feature is part (e.g. Record). Mandatory
features are denoted with filled circles while optional features
are denoted with empty circles both at the child end of the
feature relations denoted with lines. Features can be grouped
into: inclusive-or relation whereby one or more features of the
group can be selected and exclusive-or relation where exactly
one feature can be selected. These relations are depicted as
filled arcs and empty arcs respectively.

In Figure [I} feature Record with its children features
CD and Card is an example of inclusive-or, whereas feature
Play with children TV and Mobile form an exclusive-or.
Additionally, there are constraints called cross-tree constraints
that cannot be depicted directly on a feature diagram and

represent more complex relations between features [4].

In total, this feature model denotes 8 valid feature com-
binations. An example is the program that can only play
videos on TV is defined with features VOD, Play and TV.
As another example, the program (VOD always included) that
play videos (Play) on mobile sets (Mobile) that can be
recorded (Record) on a memory card (Card). It should
be noted that typical feature models contain hundreds if not
thousands of features yielding large numbers of potential
feature combinations [5].

III. PROJECT OVERVIEW

The SBSE4VME] project started in August 2012 and will
run until July 2014. The funding is approximately 153K+
Euros provided by the Austrian Science Fund (FWF Der
Wissenschaftsfonds) agency under the Lise Meitner Prograrrﬂ
This is an ongoing funding program that promotes mobility
and collaboration between Austria and the rest of the world. It
supports foreign researchers willing to pursue one or two years
of work at an Austrian research institution. The goals of the
Lise Meitner program are: i) strengthening of the quality and
the scientific know-how of the Austrian scientific community,
and ii) creating international contacts. The first author is the
recipient of the fellowship and the second author is the head
of the host Austrian institute.

IV. SCIENTIFIC PROBLEMS ADDRESSED

In this section we provide a more detailed overview of the
three problems that the proposed work aims to address.

A. Fixing Inconsistencies in the Presence of Variability

The main source of inconsistencies is the discrepancy be-
tween the variability that is modeled, using a feature model,
and the variability that is actually realized. For example,
consider the consistency rule that if a sequence diagram has
a message m targeting an object of class C, then the class
diagram of class C must contain method m. Figure [2] provides
an illustration of this rule. Consider message st ore in Figure
[2(a) that has been identified as belonging to feature CD of
our feature model in Figure [1| For this rule instance to be
consistent there must be a method store defined in class
Streamer at least in every possible feature combination
where feature CD is selected. The question is: in what features
should method store be defined to make this rule instance
consistent?

Let us enumerate the possibilities: 1) in feature CD, 2) in
feature Record, 3) one definition in feature TV and one in
feature Mobile, 4) in feature Play, and 5) in feature VOD.
This set of possibilities can be expanded by three additional
considerations. The first consideration is the assumption that
the inconsistency is caused by the use of an incorrect mes-
sage name. In our case, instead of message store perhaps
the designer intended to use message start. If so, this
method is defined in feature Record in Figure Ekb), and

IProject website http://www.sea.uni-linz.ac.at/sbse4vm/
Zhttp://www.fwf.ac.at/en/projects/meitner.html

|: Service| | : Streamer

store

Streamer Streamer
store
setup()
start() play()
(b) (c)

Fig. 2: Inconsistency Fixing Example: (a) Feature CD, (b)
Feature Record, (c) Feature Play

because feature Record is always selected when feature CD
is selected then the rule instance would be consistent. The
second consideration is the assumption that the inconsistency
is caused by the incorrect target of the message. This would
mean that other classes, besides St reamer, can be the target
and thus they would need to define the required method. The
third consideration is the assumption that the inconsistency is
caused by incorrect feature ascription of the message, meaning
that perhaps the message should be in a different feature other
than CD. Notice that these latter two assumptions open up new
sets of fixing alternatives.

Additionally, the interplay between consistency rule in-
stances must also be taken into account. This is because it
may be the case that fixing a rule instance may cause an
inconsistency in another rule instance. For example, let us
assume that class diagrams must adhere to a consistency rule
that states that classes must have distinct names for their
attributes and methods. Take now feature P1lay as shown in
Figure [J[c). The fifth alternative mentioned above for fixing
our message rule instance, adding the method store in
feature P1ay, would indeed make consistent the message rule
instance but at the price of making inconsistent the distinct
names rule instance of class Streamer.

In summary, even for this simple example, several fixing
alternatives have to be elicited and carefully analyzed. More
realistic scenarios typically contain dozens of consistency
rules, across multiple software artifacts in hundreds or even
thousands of feature combinations. Clearly, automated and
robust support is crucially needed to cope with this complexity.
This is precisely where we argue that SBSE techniques can be
leveraged. Ultimately, the selection among the fixing choices
will be done by the software designer. SBSE techniges can be
used to obtain and represent the different fixing alternatives,
and to flexibly quantify (through different fitness metrics) their
suitability and thus help the designer with his/her selection.

B. Reverse Engineering of Variability

The most common scenario for SPL development in practice
is depicted on the left part of Figure [3] It shows several

related systems (i.e. they offer some similar functionality)
that are developed mostly independently, although they may
have shared some artifacts at some point in their history. This
approach is called product-centric [6], and works fine upto
a certain number of distinct products depending on product
domains, the development organization and its software en-
gineering practices. After such number, simply adding new
independently-developed systems is no longer feasible either
because of managerial, economical or technical reasons. It
is then that a SPL approach is the premier alternative for
effectively coping with the complexity of the variability in
the existing products.

The transition to a SPL approach is a not a minor under-
taking because it requires a significant investment to identify,
extract, and reify the variability across all the artifacts involved
as depicted on the right part of Figure In this figure,
the software artifacts (e.g. requirements or implementation)
capture the variability identified in accordance with the feature
model. The proposed work focuses on two crucial issues of
reverse engineering in this approach: feature model extraction
and feature refactoring.

Extracting feature models that capture the variability present
in the product-centric products is a cornerstone in SPL de-
velopment. Several techniques have been proposed to distill
feature models from scripts or other documentation [[7]], [5];
however, they rely heavily on the designer’s intuition or
domain knowledge. In contrast, our work proposes using
feature sets — the combination of features as shown in [§]]
— in tandem with consistency constraints for the extraction of
feature models. It should be noted that feature sets can be
incomplete and uncertain; for instance, the developer may not
know all the features in each product or decide not to integrate
all products at once but instead to take a reactive approach
(see [6]) whereby products are incrementally integrated into
the SPL infrastructure that is being developed. It is these
incompleteness and uncertainty that make SBSE techniques
an appealing option because they permit realizing different
alternative feature models, to represent the desired feature sets,
that can be fine tuned by using consistency constraints as a
basis for metrics to quantify their suitability.

Feature refactoring [9], can be regarded as a form of
software clustering along feature functionality. Its ultimate
goal is to modularize features such that they can be composed
or selected in all the combinations denoted by a feature model
and yield working systems. Like before, current approaches
in this topic make a hefty demand of the developer’s domain
knowledge and assume some basic familiarity with the imple-
mentation [[10], [11], [9]. But most importantly; in these pieces
of work, only one refactoring alternative is ever considered. In
this regard, we propose to exploit SBSE techniques to provide
developers with multiple refactoring alternatives that take into
account also software quality measurements in the form of
extensions and adaptations to standard Object-Oriented metrics
and feature model metrics [[12].

C. Variability Evolution

Like any other software project, a Software Product Line
if successful is deemmed to evolve. But in contrast with
standard traditional single systems, evolution can occur in
either of the two core SPL processes (domain engineering or
application engineering) that have to be consistent with each
other. Next we present the main evolution scenarios that our
work proposes to study.

Feature model evolution. Of crucial importance is the evo-
Iution of the feature models because they determine the set
of valid features combinations that must be realizable. An
example of feature model evolution is changing the type of
relation among features. For instance, assume that now the
VOD systems of the product line can play both on TV and
mobile sets. This means that now there is an inclusive-or
relation between feature P1ay with features TV and Mobile.
This seemingly simple change actually creates other four new
possible feature combinations in addition to those 16 denoted
by our feature model of Figure [I] Other common feature
model changes are adding and removing features, moving
features across the feature hierarchy, and changes in cross-
tree constraints. All these changes may turn consistent rule
instances into inconsistent, delete rule instances, or create new
rule instances that need to be validated.

Evolution of variability realization. Software artifacts with
variability are also subject to evolution. A first case is when
evolution does not modify the semantics of features. For
example, standard refactorings such as method renaming could
be used to improve factors like code readability and their
changes remain contained at the syntactic level. A second case
is when feature semantics is altered; for example, by moving a
code or model fragment that realizes some functionality from
one feature to another.

Both types of scenarios have an impact on the consistency of
the SPL because they may trigger the creation of new rule in-
stances, and deletions or modifications of existing ones. SBSE
techniques can be leveraged here to elicit the consistency
impact that different evolution scenarios may produce. In this
way, designers could analyze the ripple effect of changes and
their impact before they are actually committed or realized.

V. PROJECT GOALS

The overall goal of the proposed work is to perform a
thorough evaluation of the potential of SBSE techniques for
supporting the management of consistency and evolutionary
problems in Software Product Line development. The pro-
posed project aims to achieve the three following specific
goals:

o Perform a comprehensive review and analysis of SBSE
techniques, with special focus on Genetic Algorithms
and Genetic Programming, to identify the possible al-
ternatives for tackling the identified SPL development
problems and characterize their pros, cons and trade-offs
involved.

o Implement adequate tooling support that facilites the
application of the identified SBSE techniques.

!
Product A ‘ = |) | L ‘
L—| | Requirements —3 Design 5 | Implementation

Reverse

Engineering
Product B ‘ =] I = 7 = Variability
L] | Requirements—3 Design |} | Implementation

—

Product N ‘ =] |] 7 = ‘
Requirements —s3 Design Implementation

Variability and Commonality

Feature Model

- - L
\ | ‘

1
Requirements. Design Implementation

- |]

Requirements;|

Product A

:I_‘ — 1]
pr I |

. Variability £ 3

Design — | Management >\~ Requirements —| Design ||

- Mechanism H | 4 _J
Product B
Implementation
! 1]
I q T nl
Requirements—| Design |mplemen|al|or‘1

Product N

[1
Implementation

Artifacts with

Fig. 3: Reverse Engineering Variability

o Conduct an assessment of the selected SBSE techniques
with several cases studies of distinct sizes and application
domains.

VI. PROJECT RELEVANCE AND RELATED PROJECTS

The three main topics of the proposed work — inconsistency
fixing, reverse engineering, and evolution — are themes relevant
to the CSMR community. We complimentary study the impact
of variability on these three topics.

This project is a result of our previous EU-funded project
C2MV2 [13]], which studied how variability impacted consis-
tency checking and provided mechanisms to detect inconsis-
tencies. The current project goes a step further into fixing the
inconsistencies once they have been detected.

Search Based Software Engineering is a thriving research
area [14]. There have been several past and ongoing projects
that have exploited this paradigm. For example, the EU-
Funded project EvoTest Evolutionary Testing for Complex
Systems [15] applied SBSE testing techniques to various
domains such automotive. A recent project FITTEST [16],
aims at applying SBSE techniques to testing the Future of
the Internet. A recent UK-lead project has proposed a new
vision, the GISMOE challenge [17], whereby the software
non-functional properties are optimized via SBSE techniques.

ACKNOWLEDGEMENTS

This research is partially funded by the Austrian Science
Fund (FWF) project P21321-N15 and Lise Meitner Fellowship
M1421-N15.

REFERENCES

[1] D. S. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Software Eng., vol. 30, no. 6, pp. 355-371,
2004.

[2] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Softw., Pract. Exper., vol. 35, no. 8, pp. 705-754,
2005.

[3] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software
engineering: Techniques, taxonomy, tutorial,” in Empirical Software
Engineering and Verification, ser. Lecture Notes in Computer Science,
B. Meyer and M. Nordio, Eds. Springer Berlin Heidelberg, 2012,
vol. 7007, pp. 1-59. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-25231-0_1

[4] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615-636, 2010.

[5] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in I/CSE, R. N. Taylor, H. Gall, and
N. Medvidovic, Eds. ACM, 2011, pp. 461-470.

[6] C. W. Krueger, “Easing the transition to software mass customization,”

in PFE, ser. Lecture Notes in Computer Science, F. van der Linden, Ed.,

vol. 2290. Springer, 2001, pp. 282-293.

K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There

and back again,” in SPLC. IEEE Computer Society, 2007, pp. 23-34.

[8] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, ‘“Reverse
engineering feature models from programs’ feature sets,” in WCRE,
M. Pinzger, D. Poshyvanyk, and J. Buckley, Eds. ~IEEE Computer
Society, 2011, pp. 308-312.

[9] R.E.Lopez-Herrejon, L. Montalvillo-Mendizabal, and A. Egyed, “From
requirements to features: An exploratory study of feature-oriented refac-
toring,” in SPLC. IEEE, 2011, pp. 181-190.

[10] J. Liu, D. S. Batory, and C. Lengauer, “Feature oriented refactoring
of legacy applications,” in /CSE, L. J. Osterweil, H. D. Rombach, and
M. L. Soffa, Eds. ACM, 2006, pp. 112-121.

[11] S. Trujillo, D. S. Batory, and O. Diaz, “Feature refactoring a multi-
representation program into a product line,” in GPCE, S. Jarzabek, D. C.
Schmidt, and T. L. Veldhuizen, Eds. ACM, 2006, pp. 191-200.

[12] E. Bagheri and D. Gasevic, “Assessing the maintainability of software
product line feature models using structural metrics,” Software Quality
Journal, 2010.

[13] R.E.Lopez-Herrejon and A. Egyed, “C2mv2: Consistency and composi-
tion for managing variability in multi-view systems,” in CSMR, T. Mens,
Y. Kanellopoulos, and A. Winter, Eds. IEEE Computer Society, 2011,
pp- 347-350.

[14] Y. Zhang, “Repository of publications on search based software engi-
neering. http://crestweb.cs.ucl.ac.uk/resources/sbse_repository.”

[15] “Evotest evolutionary testing for complex systems,”
http://evotest.iti.upv.es/.

[16] T. E. J. Vos, P. Tonella, J. Wegener, M. Harman, W. Prasetya, E. Pu-
oskari, and Y. Nir-Buchbinder, “Future internet testing with fittest,” in
CSMR, T. Mens, Y. Kanellopoulos, and A. Winter, Eds. IEEE Computer
Society, 2011, pp. 355-358.

[17] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the pareto program
surface using genetic programming to find better programs (keynote
paper),” in 27" IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012), Essen, Germany, September 2012.

[18] T. Mens, Y. Kanellopoulos, and A. Winter, Eds., /5th European Con-
ference on Software Maintenance and Reengineering, CSMR 2011, 1-4
March 2011, Oldenburg, Germany. IEEE Computer Society, 2011.

[7

—

http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1007/978-3-642-25231-0_1

	Introduction
	Variability Modeling Basics
	Project Overview
	Scientific Problems Addressed
	Fixing Inconsistencies in the Presence of Variability
	Reverse Engineering of Variability
	Variability Evolution

	Project Goals
	Project Relevance and Related Projects
	References

